REVERSE LOGISTICS AS A PARAMETER THE CIRCULAR ECONOMY AND BUSINESS PROFITABILITY

Maxwel Costa de Amorim
Centro Universitário CESMAC
maxwel.amorim.ma@gmail.com

Purpose: Recognize the Business Process Management - BPM cycles, the decomposition of processes and the aggregation of value related to the product's life cycle. Analyze product life cycle - CVP in the context of reverse flow as a reference to business sustainability and the circular economy from conception to the moment the product is discontinued and/or withdrawn from the market by analogy to reliability engineering when describing the rate of product failure over time.

Research Approach: It is classified as applied, as it seeks to apply theoretical knowledge in practice, and descriptive, as it seeks to describe and analyze the different aspects of reverse logistics in the context of the circular economy.

Findings and Originality: Possible causes of the direct flow of the production process can intensify the reverse flow. 1. Early failure stage, the failure rate is high due to manufacturing defects, design errors or other problems that may arise in the first days of product life. These failures are generally identified and corrected during the product's warranty period (post-sales reverse flow); 2. Useful life phase, the product is operating normally and meeting consumer expectations, which may generate reverse flow due to the need to improve product performance, regulatory requirements, market saturation; 3. Wear phase As the product approaches the end of its useful life, the failure rate starts to increase due to the natural wear and tear of the product over time, which can lead to mechanical failures, component degradation or obsolescence technological. At this stage, maintenance and repair costs can become permanent.

Research Impact: In the context of the circular economy they can lead to more efficient and efficient waste and resource management practices, drive sustainable growth and innovation. provide evidence to support the implementation of best practices, informed decision making and more effective policy making (industry and public) as well as perception change and awareness and collaboration and partnerships.

Practical Impact: Highlights include the development of new technologies and products; Solving real-world problems and challenges (renewable energy sources, productive efficiency, improving food security or fighting disease); Improved efficiency and productivity (more efficient processes, cost reduction, increased competitiveness and better financial results); Information and decision-making based on data in the formulation of public policies, business strategies and individual decisions. (politics, economics and management)

Keywords: reverse flow, product lifecycle, business rectability, circular economy
REVERSE LOGISTICS AS A PARAMETER THE CIRCULAR ECONOMY AND BUSINESS PROFITABILITY

Maxwel Costa de Amorim
Centro Universitário CESMAC
maxwel.amorim.ma@gmail.com

Purpose: Recognize the Business Process Management - BPM cycles, the decomposition of processes and the aggregation of value related to the product's life cycle. Analyze product life cycle - CVP in the context of reverse flow as a reference to business sustainability and the circular economy from conception to the moment the product is discontinued and/or withdrawn from the market by analogy to reliability engineering when describing the rate of product failure over time.

Research Approach: It is classified as applied, as it seeks to apply theoretical knowledge in practice, and descriptive, as it seeks to describe and analyze the different aspects of reverse logistics in the context of the circular economy.

Findings and Originality: Possible causes of the direct flow of the production process can intensify the reverse flow. 1. Early failure stage, the failure rate is high due to manufacturing defects, design errors or other problems that may arise in the first days of product life. These failures are generally identified and corrected during the product's warranty period (post-sales reverse flow); 2. Useful life phase, the product is operating normally and meeting consumer expectations, which may generate reverse flow due to the need to improve product performance, regulatory requirements, market saturation; 3. Wear phase As the product approaches the end of its useful life, the failure rate starts to increase due to the natural wear and tear of the product over time, which can lead to mechanical failures, component degradation or obsolescence technological. At this stage, maintenance and repair costs can become permanent.

Research Impact: In the context of the circular economy they can lead to more efficient and efficient waste and resource management practices, drive sustainable growth and innovation. provide evidence to support the implementation of best practices, informed decision making and more effective policy making (industry and public) as well as perception change and awareness and collaboration and partnerships.

Practical Impact: Highlights include the development of new technologies and products; Solving real-world problems and challenges (renewable energy sources, productive efficiency, improving food security or fighting disease); Improved efficiency and productivity (more efficient processes, cost reduction, increased competitiveness and better financial results); Information and decision-making based on data in the formulation of public policies, business strategies and individual decisions. (politics, economics and management)

Keywords: reverse flow, product lifecycle, business rectability, circular economy